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1. INTRODUCTION 

The problem of intransitivities in social choice has been the subject of 
much investigation since Arrow’s pioneering work in this area. In the 
context of social choice over multidimensional policy spaces, Plott [lo] 
has shown the severity of the restrictions which are needed in order to 
generate an equilibrium policy outcome. Little attention has been paid, 
however, to the properties of the intransitivities when these strong 
equilibrium conditions are not met. One exception is Tullock [13], 
who has argued that Arrow’s result is irrelevant in this context because 
the cycle set will be a fairly small area in the space. But Tullock’s argument 
is not rigorous, and no other work has proceeded any further along this 
line. 

In this paper, we show a rather surprising result, namely, that in the case 
where all voters evaluate policy in terms of a Euclidian metric, if there is 
no equilibrium outcome, then the intransitivities extend to the whole 
policy space in such a way that all points are in the same cycle set. The 
implications of this result are that it is theoretically possible to design 
voting procedures which, starting from any given point, will end up at 
any other point in the space of alternatives, even at Pareto dominated 
ones. A constructive proof is given below which does precisely this in the 
Euclidian case. While we only consider the case of Euclidian metrics 
here, there does not seem to be any reason why the results herein would 
not extend to more general types of utility functions. 

* This research was supported by NSF Grant No. SOC74-20443. A previous version 
of this paper was titled “Intransitivities in Spatial Voting Games.” I wish to thank 
Richard E. Wendell and James Ward for helpful criticisms on the proof of Theorem 2. 
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2. ASSUMPTIONS AND DEFINITIONS 

We assume a set N = (1, 2,..., n} of voters, and assume that the policy 
space X is Euclidian m space, i.e., X = Rm. For each voter i E N, we assume 
there is a utility function Ui : X --f R which for present purposes is assumed 
to be a monotone decreasing function of Euclidian distaince; i.e., for all 
i E N, 3.~~ E R” s.t. 

Ui(X) = @i /I x - xj 1;. (2.1) 

Here I/ . ji represents the standard Euclidian norm, and Qi : R --f R is any 
strictly monotone decreasing function. We use the notation 

(2.2) 

Given the nature of the utility functions it follows that 

x >i y 0 I! x - xi iI < 11 y - xi 11. (2.3) 

We use the notation / B / to represent the number of elements in a set 
B C N, and use the shorthand 1 x > i J’ [ = [(i E N j x >i y}i. Then, we 
can define a majority preference relation over R”’ as follows. For any X, 
I’ E R’” 

x>JI~~x>~J~[ >n/2. (2.4) 

Defining the strong majority relation in the usual way (i.e., x > y c- 
.X > y and -( y > x)), it follows that 

s > y  0 / x >i y  / > n/2. W) 

If all voters evaluate policy in terms of Euclidian distance, the conditions 
for equilibria can be stated in terms of the existence of a total median. 
We develop this formally: 

For any y E R”“, c E R we can define a hyperplane as follows: 

Hy.e = {x 1 s’ . y  = cl. (2.6) 

This partitions R” into three sets, H,,, , Hz,, , and HY,~, where 

H& = (x I s’ . y  > c}, 

H;c = {x 1 x’ . y  < c}. (2.7) 

Now, for any S C Rm, we write 1 S [ = l{i 1 xi E S}l. Then H,., is said to be 
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a median hyperplane o / Hz,e ] < n/2 and j H;,,c i < n/2. We let M be 
be the set of median hyperplanes. It is proved in [6] that for all y E R”“, 
there is at least one H,,, E M, although this may not be unique. 

DEFINITION 1. A vector x* E X is a total median zr for all y E R’“, 
3H,,e E M such that x* E Hy,e. It is a strong total median if in addition, 
for aN y, H,., E M is unique. 

A total median is not necessarily unique, but a strong total median is 
unique. Notice that whenever there are an odd number of voters, any 
total median is unique, and is also strong. For even numbers of voters 
it is possible to have a unique total median which is not strong, as would 
be the case if four voters were arranged with their ideal points at the 
corners of a square. 

DEFINITION 2. A vector x* E X is a majority Condorcet point zr.x* > y 
for all y E X. 

Davis, Degroot, and Hinich [l] prove the following theorem, which 
establishes necessary and sufficient conditions for the existence of a 
majority Condorcet point and for transitive social ordering in the Euclidian 
model. 

THEOREM 1. I f  all Ui are as in (2.1), then x* E X is a Condorcet point 
iy it is a total median. Further, if x* is a strong total median, the social 
order is transitive on X, with x $ ye jl x - s* II < 11 y - x* /I. 

Proof. See [l, Theorems 1 and 4, and Corollary 21. Q.E.D. 

Figure 1 illustrates the necessity of the strong total median to guarantee 
transitivity of the social ordering. Here there is a unique total median 
at x* = Ct=, x,/4, but it is not a strong total median. In this example, 
we have z - x, x - y, yet y > z, violating transitivity of the social 
ordering. 

l l l 
X Y z 

l x*= tot4 median 

9x4 -3 
FIGURE 1 
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With the exception of the above type of problem, generated by even 
numbers of voters, which gives rise to intransitive indifference, Theorem 1 
shows that the existence of Condorcet points and the existence of transi- 
tivity of the social ordering both coincide. For odd numbers of voters, 
the two properties completely coincide. This result is not too surprising, 
but given the severity of the restrictions needed to guarantee transitivity 
(namely, existence of a strong total median) it is of considerable interest 
to explore the nature of the intransitivities when these symmetry conditions 
are not met. 

3. THE EXTENT OF INTRANSITIVITIES 

In this section, we show that when transitivity breaks down, it 
completely breaks down, engulfing the whole space in a single cycle set. 
The slightest deviation from the conditions for a Condorcet point (for 
example, a slight movement of one voter’s ideal point) brings about this 
possibility: 

THEOREM 2. Assume m 3 2, n > 3, and all voters have utility functions 
as in (2.1). If there is no total median, then for any x, y E X, it is possible 
to find a sequence of alternatives, (0, ,..., BN} with 0, = x, 0, = y, such 
that 8,+1 > Oi for 0 < i < N - 1. 

ProoJ: For each y E R”“, withIlylj= l,defineC,CRtobethesetof 
c satisfying {x 1 x . y = c} E M. It is easily shown that C, is a closed 
interval. So, setting c, = inf C, , it follows that c, E C, , and hence, we 
define H, , for any 1; as 

H, = {x / x’ . y = c,} E M. (3.1) 

Now it can be shown that a total median exists iff there is an x* E Rn8 with 

(3.2) 

where fl,+ = H, u H,,+ = {x 1 x’ . y > c,). 
Since there is no total median, it follows that there is no common solu- 

tion to the above system of inequalities. By Helley’s theorem, it follows 
that we can find a set of m + 1 vectors, y, ,..., y,, , with no common 
solution to 

.Y*’ . J’i 2 cyt = c, f (3.3) 

Out of this set, we pick a subset of vectors with no common solution 
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(without loss of generality assume they are the firstp + 1 vectors, y,, ,..., y,), 
such that for anyj, 0 < j < p, there is a common solution to 

x*’ . yj >, c-i for i i j. 0 < i < p. (3.4) 

For each 0 < j < p we set Zj to be a solution to 

Zj’ . yi = ci for all i f j, 0 < i < p, (3.5) 

and set z = (I/(p + 1)) Cj”=-, zj ; we assume without loss of generality 
that the origin of the vector space is at z (i.e., z = 0, the 0 vector). Then 
it follows that ci > 0, for all 0 < i < p, because 

0 = z’ - yi = 2 Zj’ . yi = pci + q’ ’ Yi < (P + 1) Ci . (3.6) 
j=O 

Further, for any x E R”‘, note that 

x’ . yi < 0 for some 0 < i < p. (3.7) 

Otherwise for some large a: E R, olx is a common solution for oix’ . yi > ci 
for 0 < i < p, a contradiction. Setting Hi = Huj, Fig. 2 illustrates a 
possible configuration of the yi and Hi for the two-dimensional case. 

FIGURE 2 

Now, for any ok , we construct 8,+, as follows: From (3.7), it follows 
that for some i, 0,’ * yi < 0. Pick any such i. Then, we define 8,+, as 
follows: 

e k+l = 8, + [ci - 2~~’ . 41 yi . (3.8) 
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Figure 3 illustrates this for the two-dimensional case. Now, 

‘I erc II2 = ll(Vi’ * b) Yi + (e, - (Yi’ - 6s) Yi)ll2 

= II~ . 4) yi 1i2 + II 8, - 04 - 0,) yi 112 

= cd . w + II er - b4 - 0,) .h 112, 
and similarly 

(3.9) 

II ok+, 112 = w  . ok,,)2 + ;I ek+l - cd . e,+,h !12, 

but, from (3.Q 

ek+l - w  . b+d yj 

(3.10) 

= ek + ici - 2Yi’ - e,] yj - J’i’ . (e, + cci - 2Yi’ . e,) yi) yi 

= ek + [ci - 2Yi’ - e,] yi - [Q - 2Yi’ . e,] yi - cy,f - ek) I’i 
(3.11) 

= ek - crj’ . e,) Jli . 

So, substituting (3.11) in (3. lo), we get 

II ek+l 112 = (A + ek+d2 + II 8, - (.d . erh 112 
= cd - e,+,)2 - w - w + II 4 112 
= II ok 112 + 4 

(3.12) 

where d = (vi . 0r+1)2 - (yi’ . &J2. But, now, using (3.8), 

d = [ui’ - (e, + ccj - 2~~’ - e,) uj)~2 - cuj’ - e,y 
= [JQ’ - ek + cci - 2y,~ . e,)y - cui’ . e,)2 

= [ci - yjf . e,y - cvi’ . e,y 

= ci2 - 2ciYil - e, 2 ci2 

(3.13) 

FIGURE 3 

642/12/3-o 
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since yi’ . l& < 0 and ci > 0. Hence, 

II ek+l 112 2 II es 112 i- ~~2. (3.14) 

It is obvious, then, by successive application of the above algorithm, 
we can get Bi as far from the origin as we want. 

Next we prove that 8,+, > & . To see this, note that for any j E N, 

ek+l h 8, b II -yj - 4t+l 1: < II xj - 0, II 

- 3 . (elc+l - 0,) > w4+, i e,w) (e,+, - 0,) 
-+ xjf . yi > ((e,,, + e,)/2y . yi 

0 xi1 . yf > C-i/2. 

But now, since Hi = {x / x’ * y, = ci} E M and, by assumption, 
{ x 1 x’ . yi = cJ2) # M, it follows that /ix 1 x’ . yi > cJ2)j > n/2 hence, 
1 8,+, +j & j > n/2 and it follows that 8,+, > 8, , as we wanted to show. 

Thus, we have a sequence (8,) e2 ,...} such that 

e,+, z 4; (3.15) 

and such that 

II ek 11 - 00 as k+co. (3.16) 

But now, we must show that for any x, y, we can construct a sequence 
satisfying (3.15) and (3.16), such that B0 = x, and f!IhT = y. There is no 
problem with 8,) but we must show we can get 8, = y. 

To show this, we simply take B = {x 1 11 x/j < p) to be a sphere of 
radius p satisfying / B 1 > n/2 and y E B. Then, we set B* = (x I /j x 11 > 3~1. 

It follows, for any 8 E B*, that y > B, since for any xi E B, 
II e - xi /I > 2p, and /I y - xi II c 2~. 

Hence, we pick a sequence (0, ,..., BN-i} satisfying (3.15) and (3.16) with 
0, = x, 8,-, E B*. Then we set ON = y, and from the above argument, 
8, > e,-, . But then (e, ,..., e,} is a sequence of proposals satisfying 

e. = x, 

0, = Y, (3.17) 

ei+l > 6 , O<i<N-1, 

and we are done. Q.E.D. 

In Fig. 4, we illustrate the above algorithm for a simple example with 
five voters in two dimensions. Here we construct a cycle which arrives at 
a Pareto dominated pointy, from a Pareto optimal point x. Note that the 
algorithm given is not necessarily the most efficient way of getting from 
x to y. In particular, as illustrated here, it is seldom necessary to actually 
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FIGURE 4 

get 8,-, in B*. Frequently one will obtain a 01, prior to this stage which 
will beat y. 

4. CONCLUSION 

The theorem of the previous section shows that, at least for the Euclidian 
case, either the majority rule social order is completely transitive, or it is 
involved in a single cycle set. This result is of course dependent on the 
assumption of Euclidian utility functions. It seems probable, however, 
that the results would extend to a much larger class of utility functions. 
In particular it is conjectured that the same type of result would hold if 
each utility function were separable, i.e., of the form 

U&(x) = i Ufj(Xj), 
j=l 

where xi is the jth component of the vector x, and where Uii is any real 
valued function. 

In cases where majority rule is not transitive, attempts have been made 
in the literature to isolate subsets of alternatives which are either more 
stable or are in some sense normatively better than other points in the 
space. Some of these attempts have been based on various definitions 
of “top” cycle sets. Kadane [3] shows the vector of medians is always in 
such a set in a multidimensional model, and in a more general framework, 
the idea of top cycles serves as a basis for Schwartz’s GOCHA set [l 1, 121 
(called O(a, s) in [ll]). In the Euclidean example of this paper, the top 
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cycle set includes the whole of Rin. If the results here extend to more 
general utility functions, it would suggest that such generalized equilibrium 
notions may not be too powerful in infinite alternative spaces. 

The existence of a single cycle set implies that it is possible for majority 
rule to wander anywhere in the space of alternatives. The likelihood of 
this occurring probably is strongly dependent on the nature of the insti- 
tutional mechanisms which generate the agenda. In the context of two- 
party competition, McKelvey and Ordeshook [6] prove, in the Euclidian 
case, that mixed strategy solutions are limited to the set of “partial 
medians,” and recently Kramer [5] has shown that in a sequence of 
elections, where each candidate attempts to maximize plurality against 
the position of the previous winning candidate, that candidates converge 
towards the “minimax” set. Both the minimax set and the set of partial 
medians always exist, and tend to be small and centrally located subsets 
of the Pareto optimals. For the above institutional mechanisms then, 
the existence of a single cycle set would be largely irrelevant, and the 
conclusions of Tullock [ 131 basically confirmed. 

When there is the possibility of control of the agenda, either exogenously 
or by some member of the voting body, the existence of a single cycle 
set would be of considerable importance, as can be illustrated for the 
Euclidian case. From [8, lo], it follows that the existence of a Condorcet 
point is equivalent to a type of weak symmetry between the voters. Weak 
symmetry occurs when it is possible to find a point, x*, such that voters can 
be divided into pairs with ideal points in opposite directions from x*. 
Thus, if voters i andj are paired, we must have (xi - x*) = -a(Xj - x*) 
for some LY ) 0, as in Fig. 5. Any remaining voter (at most one) must be 
at the point x*. This condition of weak symmetry is equivalent to the 
existence of a total median at x *. With an odd number of voters it is 
equivalent to existence of a strong total median. Given the severity of the 
above conditions, the chances are very slim that such a point will exist 
in any particular situation. Even if a strong total median exists, it is 
possible for any one voter, by changing his preferences, to eliminate this 
total median. Thus, in the illustration of Fig. 5, Voter 8 could misrepresent 

FIGURE 5 
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his preferences by voting as if he had a Euclidian utility function centered 
at x8’ instead of at x8 . Now there is no total median, and we are in a state 
of flux as described in Theorem 2. 

It follows from the above consideration that if any one voter, say the 
“Chairman,” has complete control over the agenda (in the sense that he 
can choose, at each stage of the voting, any proposal Bi E R” to be con- 
sidered next) that he can construct an agenda which will arrive at any 
point in space, in particular at his ideal point. Even if there is a majority 
rule equilibrium, as in Fig. 5, the Chairman (say Voter 8) could construct 
an agenda which terminates at his actual ideal point (x8) by first mis- 
representing his preferences to create the intransitivities and then applying 
Theorem 2 to choose the appropriate agenda. This type of manipulation 
is possible regardless of the preferences of the other voters and regardless 
of whether the “sincere” social ordering is transitive. 

The possibility outlined here for controlling the social outcome through 
control of the agenda depends on several assumptions which are implicit 
in the above scenario but which should be made more explicit. First, 
the Chairman must have perfect information of the other voters’ 
preferences in order to design such an agenda. In light of the above 
analysis, it would obviously not be in the other voters’ interests to supply 
such information. Second, it depends on individuals being able to make 
fine distinctions between alternatives without becoming indifferent. The 
algorithm of Theorem 2 depends on finding new alternatives which some 
pivotal voters just barely prefer to the previous motion. If voters cannot 
make such fine distinctions, this could impose some limits on the space 
of intransitivities such that Theorem 2 would no longer hold. Finally, 
the result depends on other voters voting sincerely and without collusion. 
If the other voters see what is occurring and know what agenda is being 
used they might, even without collusion, vote against their preferences 
at some stage (i.e., vote sophisticatedly) in order to outwit our clever 
Chairman. Gibbard [2] and Pattanaik [9] show that such consideration 
cannot be ruled out in general and Kramer [4] analyzes such behavior 
in a multidimensional context, proving the existence of an equilibrium 
to the above model if sophistication is taken into account, If collusion 
occurs, then one must model the above as an n-person game without 
sidepayments (see [6]), and for all practical purposes, the chairman loses 
his power since any coalition can ensure any particular alternative in a 
given agenda by voting appropriately as a bloc at each stage of the agenda. 
Nevertheless, subject to the qualifications made above, the result of this 
paper, if it can be generalized, suggests that control of the agenda may be 
a powerful tool in a “naive” voting body. 
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